

Welcome

	Welcome to tibber.py’s documentation!

Getting Started

	Getting started

Welcome to tibber.py’s documentation!

Note

This documentation is still in development and therefore does not cover
all the functionality of the library. For now, you may read the Tibber
API docs on the Tibber API explorer [https://developer.tibber.com/explorer]
website to see all the properties and methods of each type in this library (this
close correlation to the Tibber API is explained further in the Introduction
section).

tibber.py [https://github.com/BeatsuDev/tibber.py] is an unofficial
wrapper library [https://en.wikipedia.org/wiki/Wrapper_library] for the
Tibber API [https://developer.tibber.com/] developed and maintained by BeatsuDev.
To quickly get started with common operations with the tibber.py library,
you can head over to the GitHub repo [https://github.com/BeatsuDev/tibber.py]
and read the README.md file. There you can also see the source code of the library.

Introduction

Tibber is a relatively new electrical energy provider based in Norway (though they
are available in several other nordic countries). They focus on providing useful
gadgets and functionality to save energy consumption costs.
For example, they provide functionality to charge your electric car when the
price for elecricity is low. To expand on this feature, and perhaps add this to
other smart devices in your home, you might consider using the Tibber API.

This is where tibber.py comes in to play!

With tibber.py you can retrieve data from the Tibber API super simple! This
library aims to have 100% API coverage, meaning that whatever you can do with
the Tibber API, you can do through this library too!

This API wrapper library [https://en.wikipedia.org/wiki/Wrapper_library] is
developed to be as close to the Tibber API in structure as possible. E.g. if a
home has the property consumption, then this library’s Home class will have
a consumption property too. This way, besides from this documentation, you can
read the Tibber API documentation and expect the library to work the same way.

How to use this documentation

If you are eager to get started, I would recommend reading some examples to see
how things are done with this library. Once you’ve got a feel for how it is
syntactically, you can go over to reading the API Reference (which is under
development as of now, meanwhile you can use the
Tibber API explorer [https://developer.tibber.com/explorer]). The API Reference
covers all classes and objects you will find in this library, and lists all
it’s properties and methods.

How to contribute or report an issue

To report an issue or bug, go to the GitHub repository [https://github.com/BeatsuDev/tibber.py]
and create a new issue describing your problem and how to reproduce it. Also
include what the expected behaviour was, and what the actual behaviour was.

Warning

Issues that are created which do not include the problem, reproduction of the problem,
the expected behaviour and the actual behaviour, will be tagged as invalid and
will not be fixed or attended to.

Getting started

Installation

tibber.py is available on PyPI. You can install it with pip:

pip install tibber.py

Getting basic information

Getting the “Viewer” type (this is the topmost schema (or type) under Query on the Tibber API explorer
documentation). All your homes, subscriptions, etc. will be under here.

import tibber

account = tibber.Account("your token") # This is just like the viewer type in the API explorer

Log in here: https://developer.tibber.com/explorer and check out the documentation on the right.
Click the yellow underlined text “Query”, then “Viewer”. The “account” variable above is essentially
the same as the Viewer type in the API explorer. It contains the same properties as the documentation
says that the Viewer has. So let’s for example get the name of the Viewer!

print(account.name)

What about getting a home? Checking out the https://developer.tibber.com/explorer documentation, we
see that the Viewer type has a “homes” attribute and is surrounded by [brackets]. That means it comes
in the form of a list. Let’s get the first home in the list!

print(account.homes) # [<Home: Home 1>, <Home: Home 2>, ...]
home = account.homes[0]
print(home) # <Home: Home 1>

Retrieving consumption/production information

Moving on from the previous example, what can we do with a home? Let’s check out the documentation again.
Click the yellow underlined text “Home” and check out the documentation. We see that the Home type has a
“consumption” method! Let’s try to call that method with some paramters and get the HomeConsumptionConnection type back!

consumption = home.consumption(resolution = "HOURLY", last = 24) # last 24 hours
print(consumption) # <HomeConsumptionConnection: HomeConsumptionConnection>

Clicking the yellow underlined text “HomeConsumptionConnection” we see that it has a “nodes” attribute wich
has a list of consumptions. Within the Consumption type you have all the goodies such as total cost, unit price,
currency etc. Let’s print the total cost of the last 24 hours!

running_total = 0
for node in consumption.nodes:
 running_total += node.total_cost # Note that the naming convention for the attributes is snake_case

print(running_total) # 123.45

Looking back at the documentation, we see that the HomeConsumptionConnection type also has a PageInfo type.
The PageInfo actually has a totalCost property that we can use instead of looping through all the nodes!
Here’s how to achieve the same thing as above, but using the page info we have instead!

print(consumption.page_info.total_cost) # 123.45

Getting production information is very similar to getting consumption information. The only difference is
that you use the “production” method instead of the “consumption” method. The rest is the same!

Sending a push notification

Sending a push notification is very simple. This sends a push notification
to all your devices that are logged in to the Tibber app with the same
account as the one you have generated your access token with.

import tibber

account = tibber.Account("your token")
account.send_push_notification("My title", "Hello! I'm a message!")

Live measurements

To get live measurements, you first have to register callback functions
for the live_measurement event. This event is emitted every time a
measurement has been made and has been retrieved from the API.

In simpler terms; in order to get live data, you need to create a function
that you want to be run every time a live measurement is available. Then
you must “register” that function so that it actually runs every time
a live measurement is available.

Note

The live measurement may be delayed with a few seconds and is updated
only every 2-10 seconds (in my experience).

import tibber

account = tibber.Account("your token")
home = account.homes[0]

@home.event("live_measurement") # register the following function to run when the live_measurement event is emitted
async def process_data(data): # Note the data parameter in the function. This is required and is of type LiveMeasurement.
 print(data.power)

Now start retrieving live measurements
home.start_live_feed()

Note

Any code after home.start_live_feed() will not run! This is because the
start_live_feed() method is blocking. It will run forever and will only
stop when stopped with Ctrl+C or when the interpreter closes.

To close the live feed after any condition, you can pass the exit_condition argument to
the start_live_feed() method. If the exit_condition function returns true, the live feed
will be stopped (and code execution will continue).

import tibber

account = tibber.Account("your token")
home = account.homes[0]

@home.event("live_measurement") # register the following function to run when the live_measurement event is emitted
async def process_data(data): # Note the data parameter in the function. This is required and is of type LiveMeasurement.
 print(data.power)

Now start retrieving live measurements
home.start_live_feed(exit_condition = lambda: True) # This will stop the live feed after the first measurement

import tibber

account = tibber.Account("your token")
home = account.homes[0]

@home.event("live_measurement") # register the following function to run when the live_measurement event is emitted
async def process_data(data): # Note the data parameter in the function. This is required and is of type LiveMeasurement.
 print(data.power)

def my_exit_function(live_measurement_data):
 return live_measurement_data.power > 1000:

Now start retrieving live measurements
home.start_live_feed(exit_condition = my_exit_function) # This will stop the live feed when the power is above 1000
print("We made it! The power is above 1000!")

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to tibber.py’s documentation!

 		
 Getting started

 		
 Installation

 		
 Getting basic information

 		
 Retrieving consumption/production information

 		
 Sending a push notification

 		
 Live measurements

_static/plus.png

_static/file.png

_static/minus.png

